
:1

COMPUT ER SCIENCE
TECHNICAL REPORT SERIES

UNWERS1TY OF MARYLAND
8 COLLEGE PARK~ MARYLAND
U.’ 20742

~ , , ~~~


~~~~~~~~~~*
7L e

~
1 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

avid L.~fMilgran~~~mputer Science Center
University of Maryland
College Park, MD 20742

ABSTRACT

A thresholded (binary) image can be represented as a
region tree in which each node corresponds to a component
of l’ s (object) or 0’s (background). If regions 0 and B
share a border , then one encloses the other. This en-
closure relation defines the tree. The chain code of the
component and a description based on statistical features
are stored at each node. The region tree is built in a
single pass over the image.

U Ni ‘~~tJ.Q~ Laboratory under
Contrac DMG53-7f-~~ 13 RPA Order—32p~EJ is gratefully
acknowledged , as 4s the ~ip~~~ fwb. ~~~lly Rowe. ~J3

— 1•t•oJ• ~

\
~~~~~~~~~~~‘v t.a



1. Introduction

The algorithms to be described here are basically well

known. However, the versions given here are especially

simple and well—structured . In addition , some of the al-

gorithms, particularly those that construct the containment

tree and the border chain codes, are not easily found in the

literature. An effort has been made to design the basic al-

gorithmic steps in a manner applicable to hardware implemen-

tation.

We assume that we are given an image and a threshold.

The border of the image consists of below-threshold points.

For each connected component, we wish ~xtract and store

three essentially different kinds of ‘-mation . The first

consists of descriptive features over the region such as

mean and standard deviation of gray level , area , perimeter ,

moments, etc. The second type of information is a chain

encoding of the outer boundary of the region. Note that

while a region may have many holes (each corresponding to

an inner boundary) it has exactly one outer boundary. The

third type of information is stored inherently by the data

structure and corresponds to the containment relations

• among regions. It is convenient to store the complete set

of connected components, including components of background ,

rather than simply the above-threshold regions.

As an example of the desired structure, consider the

following region map:



The data structure describing the regions of this map is:

A

C

D r

c±j
Each node contains the feature data and the boundary en-

coding of the named region. Note that if the root is con-

sidered to be at level 0 then nodes at odd levels corres-

pond to above—threshold regions while nodes at even

levels (>0) correspond to holes.

In addition to producing a data structure the algorithm

can produce a labelled image in which each connected com-

ponent is assigned a unique label. The ability to know

precisely which pixels belong to the same component is very

useful for display as well as analysis. Labelled regions

thought to be of particular interest can be highlighted or

• outlined ; while regions of no interest (e.g., clutter ,

noise , accidents) can be suppressed in the display . How-

ever , while the data structure can be produced in a single

pass over the original image, it reqidres two passes to

produce the labelled region map: the first, to partially

label the image and create a label equivalence table; the



second , to read both the partially labelled region map and

the label equivalence table and to produce the final re-

gion map.

The connectivity decisions which make up the core of

the algorithm use a 2x2 processing window. However, a 3x3

window is used since it also allows statistics based on

border points to be computed. The processing window moves

across the image in raster fashion so that every point of

the image is in the center of the 3x3 window exactly once.

It is convenient to embed the image in a row of background

levels which are not processed directly. This allows us to

define the algorithm without considering boundary con-

ditions. We represent the pixels in a 3x3 window as

abc
dxe . Thus three rows of the image are maintained at all
fgh

times (although , as we mentioned, only two rows are strictly

necessary). In addition, various auxiliary data structures

are needed.

Two algorithms will be presented. The first describes

region tracking; the second constructs boundary chain codes.

It is straightforward to integrate the two algorithms into

a single pass.

ACCESSION 
~~

DOC luff $sctlon D
UNANNOUNC ED
JU$1 ICATION __________

j  — i BY

• 
, Di~’. ‘cr SPtCIAL.

t



2. Region tracking

This algorithm constructs for each connected component

a descriptive feature vector. Although we do not specify

the features, it is assumed that they are all extractable

from a raster scan using a 3x3 processing window. Addition-

al storage is available to hold the feature values for the

components.

When a new region is encountered during a raster scan,

it is assigned a vector of registers to store its feature

values. As the region is being tracked on the same row or

continued on the next row , values continue to be

accumulated into its feature vector. In order to specify

the correspondence between a region and its register vector ,

a label is created and assigned to each point of the region

which has already been visited. The label will identify

the appropriate register vector, usually by some indexing

scheme. Region points found to be adjacent to already

labelled region points inherit that label value and con-

tribute statistically to its register vector.

Often a region encountered for what is thought to be

the first time may at a later row prove to be connected to

a previously encountered region. Such regions are called

subcomponents. Inasmuch as feature values were being

maintained separately for each subcomponent, it becomes

necessary to combine the feature values immediately or at

least to create a flag that signifies that the values for

the two .ubcomponents will eventually be combined. If the

-‘-I



latter course is chosen , a table is constructed indicating

which labelled regions overlap. The label equivalence

table can be stored either as a bit matrix or as a list.

In this algorithm we take the immediate approach and com-

bine feature vectors for equivalent regions as soon as the

equivalence is discovered . The fact of recombination im-

poses constraints on the types of features which can be

evaluated during the single pass. Thus while the area of

a component is the sum of areas of its subcomponents , it

is not possible to compute the maximum row extent of a com-

ponent from the run widths of its subcomponents. This

feature , of course , could be computed on a second pass

(i.e., over the labelled region map).

Since region labels propagate from point to point, we

must maintain the labels of the current line and the pre-

vious line as well as their gray levels. Actually , only

the labels of those points in the preceding row that are

neighbors of unexamined points in the current row, and the

labels of those examined points in the current row , need

be stored. Thus the amount of storage necessary for

labelled points can be reduced to a single row.

Just before a new row is read in to be processed, the

current row becomes the previous row. Rather than copy

the data from one data area to another , one ordinarily

cycles an indirect pointer array. However, in hardware ,

copying the data may be more efficient than cycling a

pointer since the copying can be done in parallel.



The label assigned to a component should designate

whether the component is above or below threshold. If the

background is not partitioned into regions (i.e., is

ignored) by the algorithm then the data structure becomes

simply a list of above-threshold regions. This is suitable

for many applications, e.g., infrared target cueing . For

the sake of generality , we describe below how to determine

the containment relation which defines the tree structure.

It is evident that if two components of a binary image are

adjacent then one encloses the other. However , if more

than one object-background transition has been detected ,

one cannot know which encloses which from strictly local

information at the time of initial label assignment. The

determining condition is “which region terminates first”?

The region terminating first is enclosed by the adjacent

region. Thus whenever a region terminates , the data struc-

ture is updated to reflect the containment relation. When

a region is ini tiated it is entered onto an “active”

list —— the list of unterminated regions. At the end of

each row, the active list is compared with the list of

component labels of the current label row. An.y active com-

ponent whose label does not appear in the current label row

must have terminated. Additionally, when overlapping re-

gions are combined, the discarded label must be deleted

from the active list.

For simplicity, the algorithm will use 0 to indicate

a point below threshold and 1 to indicate a point above



For example, = indicates that only d and x are above

threshold. We are also assuming that regions of above

threshold points are 4-connected (i.e., based on adjacency

of 4—neighbors). To maintain consistency when tracking the

background , we require that background regions be def ined

by 8-connectivity .

Other implementations of this algorithm operate by

maintaining lists of endpoints of above threshold runs.

T~- i s  can increase the efficiency of the algorithm when corn-

g descriptive features, since for features not depen-

• .. un the gray level, one can compute the total contribu-

tion to the feature accumulator based on the run rather

than at each individual point of the run. This can result

in significant savings. The above algorithm can be modified

to take advantage of this saving.

L



Algorithm for Producing the Labelled Region Tree

“INITIALIZE”

REGION_COUNT 1

REGION_NOT_NEW ‘4- FALSE

NEW LABEL NEEDED 4- FALSE

PLACE BACKGROUND LABEL ON ACTIVE LIST

DO FOR X = 1,.. .,WIDTH “Label the Outer boundary as background”

CURRENT LABELS (X) ‘4- <REGION COUNT ,BACKGRO UND> OD

“PROCESS EACH NEW IMAGE RECORD”

DO FOR EACH IMAGE RECORD

DO FOR X = 1,. ..,WIDTH “Cycle the label bu f fe r s”
PREVIOUS LABELS(X) + CURRENT LABELS (X ) OD

READ AN IMAGE RECORD AND CYCLE TUE IMAGE ROW BUFFERS
DO FOR X = 1,. ..,WIDTH “Threshold and label each pixel”

CALL DETERMINE LABEL (X , LABEL ,NEW_LABEL_NEEDED , REGION _NOT_NEW)

CURRENT LABELS (X ) ÷ LABEL
IF NEW_LABEL_NEEDED

THEN “We seem to be entering a new region”

PLACE LABEL ON ACTIVE LIST

NEW _LABEL_NEEDED FALSE Fl
IF REGION_NOT_NEW

THEN “Merge the two equivalent region descriptions”

CALL EQUIV(PREVIOUS_LABELS (X) ,CURRENT_LABELS (X-l))
REGION _NOT_NEW 4- FALSE Fl

CALL DOSTATS (X) “Accumulate the feature data for X”

OD

DO FOR EACH LABEL ON THE ACTIVE LIST BUT NOT IN CURRENT _LABELS
“Delete any completed region from the active list”
FIND LEAST X SO THAT P REVIOUS_LABELS CX ) = LABEL

PARENT LABEL 4- CURRENT_LABELS CX)
DELETE LABEL FROM ACTIVE LIST. PLACE ON COMPLETED LIST.
APPEN D LABEL TO THE CONTAINME NT LIST OF PARENT_LABEL

OD

OD



“At this point the completed region list has the required tree

structure”

“Now compute the desired features from the accumulated feature

data at each node”

RETURN

END

PROCEDURE DETERMINE LABEL(POSN ,LABEL ,NEW ,EQ)
“Assign a label to the lower right position of a 2x2 neighborhood”

COMP UTE C = VECTOR OF THRESHOLD DECISIONS FOR A 2x2 NEIGHBORHOOD AT POSN .
CASE C OF

00 01 11
00 , 10 , 11

DO “Label the point with the upper-left label”
LABEL ~

- PREVIOUS LABELS (POSN-l)

00 10 11 01
10 , 10 , 01, 01

DO “Label the point with the upper-riqht label”

LABEL ~ - PREVIOUS_LABELS (POEN)

01 11 10 00
00 , 00 , 11, i i

DO “Label the point with the lower-left label”
LABEL ÷ CURRENT_LABELS (POSN-l)

10 01
00, 11

DO “Equivalence the lower-left and upper-riaht labels”

LABEL + PREVIOUS_LABELS (POSN)
EQ + TRUE

11
10

DO “Create a new background label’

REGION_COUNT + REGION_COUNT+1
LABEL “- <R~GION_COUNT ,BACKGRO~ND>
NEW + TRUE

-~~~~~~~~~~~
. 

- • -.~~~~~~-



00
01

DO “Create a new foreground label”

REGION _COUNT + REGION _COUNT+1
LABEL + <REGION COUNT,FOREGROUND>

NEW + TRUE

10
01

DO “There is background equivalence and a new foreground label”

REGION COUNT 4- REGION COUNT+l
LABEL 4- <REGION COUNT,FOREGROUND>

NEW 4- TRUE

EQ + TRUE

ESAC
RETURN

END 
-

PROCEDURE EQUIV(LABEL 1 , LABEL2)

“Two region labels identify the same region ”

IF LABELI ~ LABEL2
THEN “Merge the two region descriptions”

COMBINE THE ACCUMULATED STATISTICS OF LABEL2 WITH LABEL1
APPEND THE CONTAINMENT LIST OF LABEL2 to LABEL1

DELETE IAABEL2 FROM THE ACTIVE LIST

DO FOR X = 1,. ..,WIDTH
IF PREVIOUS _LABELS (X) = LABEL2

THEN PREVIOUS_LABELS(X) + LABEL1 Fl
IF CURRENT _LABELS CX ) LABEL2

THEN CURRENT_LABELS (X ) + LABEL1 Fl

DO

Fl
RETURN
END



3. Constructing boundary chains

This subsection describes that portion of the overall

algorithm for region description which creates and stores

coded representations of boundaries. As was said before,

each region has exactly one outer boundary. The encoding

of the boundary uses a more primitive code than the Freeman

code. However, it is trivial to convert the chain code

given here. The boundary chain of a region is defined here

to follow the cracks between two regions using four direc-

tions: 2* 10 . We illustrate the boundary encoding for

a simple region: Note that this re-

• •

gion does not have a hole and that if one tracks the boundary

by keeping the right hand on the object and taking right

turns when possible then the encoding consists of a single

trace. On the other hand, consider:

‘4.
~~~~~~~~~~~~~~~~~~~~

Following the previous tracing rule, one discovers two dis—

joint boundary encodings. The encoding we have described

defines 4—connected foreground regions. 8-connected re-

gion boundaries are defined by switching the roles of 0’s

and l’ s.

The reason for choosing a crack-following scheme rather

than a typical 8 direction code is to ensure that no two

region boundaries intersect. The encodings themselves are

somewhat less economical and presumably the algorithm could

be modified suitably to accommodate a more efficient encoding.

As before, the input image is processed in a raster

scan based on the same 2x2 neighborhood window (within the

3x3 processing window). Since many objects may intersect

the row currently being processed, a list of chain segments,

called the active chain list, is maintained. Chain links

arising out of a 2x2 neighborhood are called “chainlets”.

Chainlets known to extend existing (active) chains are con-

catenated to those chains. Thus the active chain list is a

list of strings. Concatenation is ind 4cated ‘oy an ampersand .

When a chain is closed, i.e., forms a cycle, then we know

that the object surrounded by the chain is terminated .

Alternatively, if a chain has not been extended in the

current row then it must have terminated in the previous

row. This test for termination can be synchronized with

the termination test for regions so that the tree node

corresponding to a region and its boundary can be closed

at that time.

When a chainlet is discovered to be both the head of

one active chain and the tail of another, we concatenate

the two active chains into a single chain -- or, if the

two chains are the same ~ilready , terminate the chain. The

overall structure of this chain algorithm thus is quite

similar to the region tracking algorithm and both can be

incorporated within the same overall framework .

a b
Consider the 2x2 neighborhood d ~

for the point x.

Let the image coordinates of x be (i,j). The chainlet
a ba b is denoted (i+l, j-~i, j); similarly , d ~“ gives rise

dlx X

to (j,j~ i,j+l). An open chain can be represented by a

head and a tail, each specified by a pair of image coordin-

ates and a sequence of moves from head to tail based on the

previous 4-direction code. In a closed chain, the head and

tail and the same coordinate pair. The point chosen to

“anchor” a closed chain can be any point through which the

chain passes. A good choice for anchor point might be the

rightmost point on the bottommost row, since this is the

last point seen by the algorithm.

When a chain is terminated, we associate the chain

encoding with the tree node corresponding to the labelled

• region enclosed by the chain. One cannot determine at the

time of termination which active chain will ultimately

contain the terminated chain. It is certainly one of the

active chains (if we include the outer boundary of the

image as a vacuous chain), but as the figure below indicates

• there is not enough information to determine which. It is

It is therefore desirable that boundary encoding be embedded

within the region tracking algorithm so that a complete tree

description can be produced.

The algorithm as presented is linear in the number of

points. However, for the configurations , nothing

need be done. Thus the algorithm is actually linear in the

number of boundary points, which may be a significantly

smaller set of points. The operations FIND_HEAD_AT and

FIND_TAIL_AT can be coded as binary searches on the column

index, or even more efficiently within a hash table.

The four-direction encoding is easily converted to a

Freeman chain encoding. We describe the translation for

the boundary chain of a object. Boundaries of holes are

treated similarly. Each segment (codon) of the four-

direction encoding is replaced by at most one Freeman codon

by considering that codon and its forward neighbor. The

table below shows the translation matrix. The symbol 0

indicates the null code; while ~ indicates tha t this com-

bination cannot occur in the four-direction encoding.

next codon

+ -p + +

+ j . 0
current codon -, ~ -. 0

+ 0

4- 0 t~
+

pp
Algorithm to Construct Boundary Chains

“INITIALIZE”

SET THE ACTIVE CHAIN LIST TO EMPTY

“PROCESS EACH IMAGE RECORD”

DO FOR EACH IMAGE RECORD , I = 1, . . . , LEGNTH
READ AN IMAGE RECORD AND CYCLE THE INPUT BUFFERS
DO FOR J = 1,...,WIDTH

CALL PROCESS_CHAINLET (I,J)

OD

OD

STOP

END

PROCEDURE PROCESS CHAINLET(I,J)
a b

LET C BE THE 2x2 BINARY RESULT OF THRESHOLD d x

LET COLOR BE THE RESULT OF THRESHOLDING X

LET COLORA BE THE RESULT OF THRESHOLDING A
CASE C OF

00 11
00, 11

DO “Nothing”

00, 12.
01, 10

DO CALL CREATE(I ,J ,COLOR)

10
0]

DO CALL CREATE (I,J,COLOR)
CALL MERGE (I,J,COLORA)

10 01
00, 11

DO CALL MERGE(I,J,COLORA)

00 10 00 10
10 , 10 , 11, 11

DO CALL AFFIX(I ,J ,COLOR)

01
10

DO CALL AFFIX (I ,J,COLOR)
CALL APPEND (I , J ,COLOR)

01 11 01 11
00 , 00 , 01, 01

DO CALL APPENDCI,J,COLOR)

ESAC
RETURN
END

PROCEDURE MERGE (I , J ,COLOR)

CALL FIND_TAIL_AT (I ,J,CHAIN1)

CALL FIND_HEAD_AT (I ,J ,CHAIN2)

IF K = L
THEN CALL COMPLETE_CHAIN CCHAIN1 ,COLOR)

DELETE CHAIN 1 FROM ACTIVE LIST
ELSE TAIL CCHAIN 1) + TAIL (CHAIN2)

CHAIN (CHAIN 1) + CHAIN (CHAIN1) & CHAIN (CHAIN2)

DELETE CHAIN2 FROM ACTIVE CHAIN LIST

Fl
RETURN

PROCEDURE AFFIX (I ,J,COLOR)

CALL FIND_HEAD_AT (I ,J,CHAIN 1)

IF COLOR - BACKGROUND
THEN HEAD CCHAIN1) • (I+l ,J)

CHAIN(CHAIN 1) + “ + “ & CHAIN (CHAIN 1)

ELSE HEAD (CHAIN 1) ~ (I,J+l)
CHAIN(CHAIN 1) + “-‘“ & CHAIN (CHAIN 1)

RETURN

4*

PROCEDURE APPEND (I , J ,COLOR)

CALL FIND_TAIL_AT (I , J , CHAIN1)
IF COLOR BACKGROUND

THEN TAIL (CHAIN) ~ (I ,J+l)

CHAIN(CHAIN1) + CHAIN(CHAIN1) & “+“

ELSE TAIL(CHAIN1) + (I+l ,J)

CHAIN(CHAIN1) + CHAIN(CHAIN1) & “ +“

Fl
RETURN

PROCEDURE FIND_TAIL_AT (I ,J,CH)
“Note: This routine is guaranteed to succeed”

FIND CH SO THAT TAIL(CH) = (1,3)

RETURN

PROCEDURE FIND HEAD_AT(I,J,CH)

“Note: This routine is guaranteed to succeed”

FIND CH SO THAT HEAD(CH) = (1,3)

RETURN

PROCEDURE COMPLETE_CHAIN (CH ,COLOR)

“Note: Head (CII) is the lower right corner of the completed

chain. Color is the color of the top right point of the

2x2 neighborhood”

IF COLOR = BACKGROUND
—

THEN “CR is the boundary of a hole”

ELSE “CH bounds a foreground region”

F’
ASSIGN CHAIN DESCRIPTION TO REGION DESCRIPTION FOR THE REGION
RETURN

U~~!ifl.

•1

4. Conclusion

The algorithms presented here allow the user to con-

struc t a tree descrip tion of the regions contained in a

thresholded image. The arc relation defining the tree is

one of containment while the informa tion store d at each

node consis ts of a statistical descri ption of the region

and a chain encoding of its boundary.

1

UNCLASSIFIED
SECURITY C LA S S I F I C A T I O N OF THIS PAGE (When Del. Enti.r.d~

DEDAD1. flflt ~ I tu~~ IiT A TIfl kI B A “ E
READ INSTRUCTIONS

r ~~ r~~u ~~~~~~~~ r~ ,~~~~, ,~~~‘i ‘W BEFORE COMPLETING FORM
I. REPORT NUMB ER 2. GOV~ ACCESSION NO. 3. R ECi PIENT’S C A T A L O G NUMB ER

4. TITLE (mi d SubUU.) 5. TYPE OF REPORT S PERIOD COVERED

CONSTRUCTING TREES FOR REGION DESCRIPTION Technical

S. PERFORMING ORG. REPORT NUMBER
TR-54l ~

-
~
“

7. AUTHOR(.) S. CONTRACT OR GRANT NUMBER(.)
—

David L. Milgram DAAG53-76C-0l38 .‘

S. PERFORMING ORGANIZAT ION NAME AND ADDRESS t O. PROGRAM ELEMENT . PROJECT , T A S K
AREA & WORK UNIT NUMBERS

Computer Science Ctr .
Univ . of Maryland
College Park, MD 20742 ________________________

It . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Night Vision Lab . June 1977
Ft. Belvoir , VA 22060 IS. NUMB EROF PAGES

14. MONITORING AGENCY NAME & ADDR ESS(If dSil.,in t from ContzoIllná OUic.) IS. SECURITY CLASS. (of thu report)

Unclassified
IS..

SCHEDULE

IS. DISTRIBUTION S T A T E M ENT (of thu. Report)

Approved for public release; distribution unlimited .

17. DISTRIBUTION STATEMENT (of th~ .b.traCt entered hi Block 20. Sf diff.r.nt I,.., Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (C.nlinu. on river.. .Sd. if nec...ar~. mid ld.nrtfy by block nsonb ,)

• Connected component tracking
Chain coding
Tree structure .

.

• Image processing
55. ASSTNA CT (ContInue o.~ reverie .id. If nec.eea,y .nd ld.nllfy by block “ ‘ ~°‘~ A thresholded (binary)
image can be represented a s a region tree In which each noc~e
corresponds to a component of l’s (object) or 0’s (background). If
regions 0 and B share a border , then one encloses the other.
This enclosure relation defines the tree. The chain code of the
component and a description based on statistical features are store
at each node. The region tree is built in a single pass over the
image .~~~~~

DO , ~2II EDITION Ø~ I NOV S$ IS OBSOl ET E UNCLASSIFIED
SECURITY ClASSI FICATION OF THIS PAGE (tWist, D.l. lnlsrH)

